Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *N*-Benzyl-*N*-cyclohexyl-4-methylbenzenesulfonamide

Islam Ullah Khan,<sup>a</sup> Zeeshan Haider,<sup>a</sup> Muhammad Zia-ur-Rehman,<sup>b</sup>\* Muhammad Shafiq<sup>a</sup> and Muhammad Nadeem Arshad<sup>a</sup>

<sup>a</sup>Department of Chemistry, Government College University, Lahore 54000, Pakistan, and <sup>b</sup>Applied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan

Correspondence e-mail: rehman\_pcsir@hotmail.com

Received 12 November 2009; accepted 13 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.097; data-to-parameter ratio = 20.6.

In the title compound,  $C_{20}H_{25}NO_2S$ , the cyclohexyl ring exists in a chair form and the mean plane through all six atoms makes dihedral angles of 56.12 (9) and 55.19 (10)° with the benzene and phenyl rings, respectively. The dihedral angle between the two aromatic rings is 77.23 (7)°. A weak intramolecular C-H···O interaction occurs.

#### **Related literature**

For the biological activity of sulfonamides, see: Ozbek *et al.* (2007); Parari *et al.* (2008); Ratish *et al.* (2009); Selnam *et al.* (2001). For related structures, see: Khan *et al.* (2009); Zia-ur-Rehman *et al.* (2009); Gowda *et al.* (2007*a*,*b*,*c*). For bondlength data, see: Allen *et al.* (1987).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{20}H_{25}NO_2S\\ M_r = 343.47\\ Orthorhombic, P2_12_12_1\\ a = 9.0702 \ (4) \ \text{\AA}\\ b = 11.1054 \ (5) \ \text{\AA}\\ c = 18.1971 \ (8) \ \text{\AA} \end{array}$ 

 $V = 1832.96 (14) Å^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.19 \text{ mm}^{-1}$  T = 296 K $0.24 \times 0.18 \times 0.13 \text{ mm}$ 

## organic compounds

#### Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.956, T_{\max} = 0.976$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$   $wR(F^2) = 0.097$  S = 0.984493 reflections 218 parameters H-atom parameters constrained 11619 measured reflections 4493 independent reflections 2764 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.036$ 

 $\begin{array}{l} \Delta \rho_{max} = 0.16 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.25 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1915 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.04 \mbox{ (8)} \end{array}$ 

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------|------|-------------------------|--------------|--------------------------------------|
| C7−H7···O1       | 0.98 | 2.38                    | 2.903 (3)    | 113                                  |

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors are grateful to the Higher Education Commission of Pakistan for financial support for the purchase of diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2488).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
- Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
- Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, 02597.
- Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.
- Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.
- Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). *Bioorg. & Med. Chem. Lett.* **19**, 255–258.
- Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.

supplementary materials

Acta Cryst. (2009). E65, o3109 [doi:10.1107/S1600536809048193]

## N-Benzyl-N-cyclohexyl-4-methylbenzenesulfonamide

## I. U. Khan, Z. Haider, M. Zia-ur-Rehman, M. Shafiq and M. N. Arshad

### Comment

Sulfonamides are well known as anti-inflamatory (Ratish *et al.*, 2009), anti-microbial (Ozbek *et al.*, 2007; Parari *et al.*, 2008), anti HIV (Selnam *et al.*, 2001) compounds. In continuation of our work regarding the synthesis of various sulfur containing heterocycles (Zia-ur-Rehman *et al.*, 2009; Khan *et al.*, 2009), the structure of *N*-benzyl-*N*-cyclohexyl-4-methyl benzene sulfonamide, (**I**), has been determined.

Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda *et al.*, 2007*a,b,c*) and are within the normal ranges (Allen *et al.*, 1987). The two aromatic rings as usual are essentially planar, while the cyclohexane ring is in a chair form. The dihedral angles between the two aromatic rings (C1—C6) & (C14—C19), the benzene (C1—C6) ring & the mean plane of cyclohexyl ring (C7—C12), and the phenyl (C14—C19) ring & the mean plane cyclohexyl ring (C7—C12) are 77.23 (7), 56.12 (9) and 55.19 (10)°, respectively, while the r.m.s. deviations for the (C1—C6), (C7—C12) & (C14—C19) rings are 0.0056, 0.2320 and 0.0046 Å, respectively. An intramolecular C—H···O hydrogen bond gives rise to a five membered hydrogen bonded ring (Table 1).

### **Experimental**

A mixture of *N*-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), sodium hydride (0.21 g, 0.88 mmol) and *N*, *N*-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of benzyl chloride (1.14 g, 9.0 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from a methanol solution.

#### Refinement

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93–0.98 Å), with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .

## Figures



Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.

## N-Benzyl-N-cyclohexyl-4-methylbenzenesulfonamide

### Crystal data

| $F_{000} = 736$                                       |
|-------------------------------------------------------|
| $D_{\rm x} = 1.245 {\rm Mg} {\rm m}^{-3}$             |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Cell parameters from 2246 reflections                 |
| $\theta = 2.9 - 20.7^{\circ}$                         |
| $\mu = 0.19 \text{ mm}^{-1}$                          |
| T = 296  K                                            |
| Blocks, yellow                                        |
| $0.24 \times 0.18 \times 0.13 \text{ mm}$             |
|                                                       |

#### Data collection

| Bruker APEXII CCD area-detector diffractometer                 | 4493 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2764 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.036$                  |
| T = 296  K                                                     | $\theta_{\text{max}} = 28.3^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -12 \rightarrow 12$               |
| $T_{\min} = 0.956, T_{\max} = 0.976$                           | $k = -14 \rightarrow 7$                |
| 11619 measured reflections                                     | $l = -24 \rightarrow 22$               |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                                  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                                | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0397P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| $wR(F^2) = 0.097$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                           |
| <i>S</i> = 0.98                                                | $\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$                                       |
| 4493 reflections                                               | $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$                                |
| 218 parameters                                                 | Extinction correction: none                                                               |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1915 Friedel pairs                                      |

Secondary atom site location: difference Fourier map Flack parameter: 0.04 (8)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| S1   | 0.13668 (7)  | 0.35270 (6)  | 0.83512 (3)  | 0.04431 (17)              |
| 01   | 0.0611 (2)   | 0.45762 (15) | 0.86060 (9)  | 0.0603 (5)                |
| 02   | 0.28860 (18) | 0.36124 (17) | 0.81433 (9)  | 0.0604 (5)                |
| N1   | 0.04730 (19) | 0.30283 (17) | 0.76418 (9)  | 0.0396 (5)                |
| C1   | 0.1256 (3)   | 0.2456 (2)   | 0.90607 (11) | 0.0386 (5)                |
| C2   | 0.2185 (3)   | 0.1481 (2)   | 0.90729 (13) | 0.0520 (6)                |
| H2   | 0.2872       | 0.1375       | 0.8699       | 0.062*                    |
| C3   | 0.2102 (3)   | 0.0660 (2)   | 0.96364 (14) | 0.0556 (7)                |
| Н3   | 0.2729       | -0.0002      | 0.9632       | 0.067*                    |
| C4   | 0.1123 (3)   | 0.0789 (2)   | 1.02044 (13) | 0.0492 (6)                |
| C5   | 0.0189 (3)   | 0.1763 (3)   | 1.01803 (13) | 0.0634 (8)                |
| Н5   | -0.0498      | 0.1867       | 1.0554       | 0.076*                    |
| C6   | 0.0247 (3)   | 0.2591 (3)   | 0.96159 (13) | 0.0607 (8)                |
| H6   | -0.0399      | 0.3241       | 0.9612       | 0.073*                    |
| C7   | -0.1161 (2)  | 0.3031 (2)   | 0.76700 (11) | 0.0404 (6)                |
| H7   | -0.1444      | 0.3559       | 0.8078       | 0.049*                    |
| C8   | -0.1825 (2)  | 0.1808 (2)   | 0.78275 (15) | 0.0573 (7)                |
| H8A  | -0.1451      | 0.1507       | 0.8292       | 0.069*                    |
| H8B  | -0.1539      | 0.1246       | 0.7445       | 0.069*                    |
| С9   | -0.3505 (3)  | 0.1892 (3)   | 0.78615 (16) | 0.0700 (8)                |
| H9A  | -0.3916      | 0.1094       | 0.7933       | 0.084*                    |
| H9B  | -0.3790      | 0.2385       | 0.8278       | 0.084*                    |
| C10  | -0.4124 (3)  | 0.2434 (3)   | 0.71630 (16) | 0.0723 (9)                |
| H10A | -0.3913      | 0.1904       | 0.6752       | 0.087*                    |
| H10B | -0.5186      | 0.2508       | 0.7207       | 0.087*                    |
| C11  | -0.3468 (3)  | 0.3647 (3)   | 0.70192 (14) | 0.0630 (8)                |
| H11A | -0.3752      | 0.4195       | 0.7409       | 0.076*                    |
| H11B | -0.3852      | 0.3961       | 0.6560       | 0.076*                    |
| C12  | -0.1796 (2)  | 0.3582 (3)   | 0.69771 (13) | 0.0556 (7)                |
| H12A | -0.1509      | 0.3100       | 0.6556       | 0.067*                    |
| H12B | -0.1398      | 0.4385       | 0.6911       | 0.067*                    |
| C13  | 0.1222 (3)   | 0.2229 (2)   | 0.71193 (11) | 0.0423 (6)                |
| H13A | 0.0613       | 0.1522       | 0.7043       | 0.051*                    |
| H13B | 0.2143       | 0.1964       | 0.7336       | 0.051*                    |
| C14  | 0.1544 (2)   | 0.2793 (2)   | 0.63832 (12) | 0.0412 (6)                |
| C15  | 0.2396 (3)   | 0.3820 (2)   | 0.63277 (14) | 0.0582 (8)                |
| H15  | 0.2745       | 0.4194       | 0.6751       | 0.070*                    |
| C16  | 0.2731 (3)   | 0.4293 (3)   | 0.56453 (18) | 0.0753 (9)                |
|      |              |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H16  | 0.3311     | 0.4981      | 0.5614       | 0.090*      |
|------|------------|-------------|--------------|-------------|
| C17  | 0.2222 (4) | 0.3763 (3)  | 0.50164 (17) | 0.0773 (10) |
| H17  | 0.2457     | 0.4082      | 0.4559       | 0.093*      |
| C18  | 0.1365 (4) | 0.2759 (3)  | 0.50727 (15) | 0.0756 (9)  |
| H18  | 0.1007     | 0.2393      | 0.4649       | 0.091*      |
| C19  | 0.1022 (3) | 0.2279 (2)  | 0.57493 (14) | 0.0572 (7)  |
| H19  | 0.0430     | 0.1597      | 0.5777       | 0.069*      |
| C20  | 0.1098 (3) | -0.0076 (3) | 1.08385 (14) | 0.0736 (9)  |
| H20A | 0.0270     | 0.0100      | 1.1149       | 0.110*      |
| H20B | 0.1993     | 0.0003      | 1.1116       | 0.110*      |
| H20C | 0.1015     | -0.0884     | 1.0656       | 0.110*      |
|      |            |             |              |             |

# Atomic displacement parameters $(Å^2)$

|                 | $U^{11}$      | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----------------|---------------|-------------|-------------|--------------|--------------|--------------|
| S1              | 0.0498 (4)    | 0.0418 (3)  | 0.0414 (3)  | -0.0050 (3)  | -0.0074 (3)  | -0.0030(3)   |
| 01              | 0.0852 (13)   | 0.0385 (10) | 0.0573 (12) | 0.0057 (9)   | -0.0130 (9)  | -0.0102 (9)  |
| 02              | 0.0487 (10)   | 0.0769 (14) | 0.0555 (11) | -0.0207 (10) | -0.0072 (8)  | 0.0060 (10)  |
| N1              | 0.0385 (11)   | 0.0467 (13) | 0.0337 (11) | 0.0014 (9)   | -0.0024 (8)  | -0.0059 (9)  |
| C1              | 0.0404 (13)   | 0.0399 (14) | 0.0353 (12) | -0.0011 (12) | -0.0071 (11) | -0.0064 (10) |
| C2              | 0.0575 (15)   | 0.0552 (16) | 0.0432 (15) | 0.0053 (15)  | 0.0086 (11)  | -0.0058 (15) |
| C3              | 0.0648 (17)   | 0.0481 (17) | 0.0538 (17) | 0.0098 (14)  | -0.0022 (14) | -0.0005 (14) |
| C4              | 0.0535 (17)   | 0.0530 (17) | 0.0413 (14) | -0.0061 (14) | -0.0065 (13) | 0.0013 (12)  |
| C5              | 0.0583 (17)   | 0.089 (3)   | 0.0429 (16) | 0.0123 (17)  | 0.0101 (12)  | 0.0069 (16)  |
| C6              | 0.0546 (17)   | 0.078 (2)   | 0.0499 (16) | 0.0238 (15)  | 0.0055 (13)  | 0.0068 (15)  |
| C7              | 0.0394 (14)   | 0.0433 (14) | 0.0385 (12) | 0.0043 (11)  | 0.0007 (11)  | -0.0047 (10) |
| C8              | 0.0416 (16)   | 0.0557 (19) | 0.0747 (19) | -0.0022 (12) | 0.0023 (12)  | 0.0114 (15)  |
| C9              | 0.0506 (16)   | 0.070 (2)   | 0.089 (2)   | -0.0053 (15) | 0.0082 (16)  | 0.0075 (17)  |
| C10             | 0.0379 (16)   | 0.104 (3)   | 0.075 (2)   | 0.0028 (16)  | -0.0055 (13) | -0.010 (2)   |
| C11             | 0.0489 (16)   | 0.084 (2)   | 0.0561 (16) | 0.0138 (17)  | -0.0051 (12) | 0.0061 (17)  |
| C12             | 0.0495 (16)   | 0.0620 (18) | 0.0552 (16) | 0.0061 (14)  | -0.0051 (11) | 0.0098 (16)  |
| C13             | 0.0404 (13)   | 0.0429 (15) | 0.0437 (14) | 0.0034 (12)  | 0.0023 (11)  | -0.0019 (11) |
| C14             | 0.0426 (14)   | 0.0415 (15) | 0.0396 (13) | 0.0057 (12)  | 0.0020 (11)  | -0.0025 (11) |
| C15             | 0.0599 (18)   | 0.062 (2)   | 0.0528 (16) | -0.0095 (15) | -0.0029 (13) | 0.0043 (14)  |
| C16             | 0.073 (2)     | 0.078 (2)   | 0.075 (2)   | -0.0156 (18) | 0.0113 (18)  | 0.022 (2)    |
| C17             | 0.094 (2)     | 0.090 (3)   | 0.0482 (19) | 0.011 (2)    | 0.0187 (16)  | 0.0196 (19)  |
| C18             | 0.102 (2)     | 0.079 (2)   | 0.0459 (17) | 0.015 (2)    | 0.0012 (18)  | -0.0021 (16) |
| C19             | 0.0699 (19)   | 0.0531 (18) | 0.0486 (16) | 0.0012 (14)  | 0.0012 (13)  | -0.0011 (14) |
| C20             | 0.093 (2)     | 0.066 (2)   | 0.0620 (18) | -0.0067 (18) | -0.0045 (16) | 0.0123 (16)  |
|                 |               |             |             |              |              |              |
| Geometric paran | neters (Å, °) |             |             |              |              |              |

| S1—O1  | 1.4291 (17) | C10-C11  | 1.495 (4) |
|--------|-------------|----------|-----------|
| S1—O2  | 1.4321 (17) | C10—H10A | 0.9700    |
| S1—N1  | 1.6219 (18) | C10—H10B | 0.9700    |
| S1—C1  | 1.758 (2)   | C11—C12  | 1.520 (3) |
| N1—C13 | 1.467 (3)   | C11—H11A | 0.9700    |
| N1—C7  | 1.483 (3)   | C11—H11B | 0.9700    |
| C1—C6  | 1.371 (3)   | C12—H12A | 0.9700    |

| C1—C2     | 1.372 (3)   | C12—H12B      | 0.9700      |
|-----------|-------------|---------------|-------------|
| C2—C3     | 1.374 (3)   | C13—C14       | 1.507 (3)   |
| С2—Н2     | 0.9300      | C13—H13A      | 0.9700      |
| C3—C4     | 1.370 (3)   | C13—H13B      | 0.9700      |
| С3—Н3     | 0.9300      | C14—C19       | 1.372 (3)   |
| C4—C5     | 1.374 (3)   | C14—C15       | 1.381 (3)   |
| C4—C20    | 1.502 (3)   | C15—C16       | 1.382 (4)   |
| C5—C6     | 1.379 (3)   | C15—H15       | 0.9300      |
| С5—Н5     | 0.9300      | C16—C17       | 1.367 (4)   |
| С6—Н6     | 0.9300      | C16—H16       | 0.9300      |
| С7—С8     | 1.513 (3)   | C17—C18       | 1.364 (4)   |
| C7—C12    | 1.515 (3)   | С17—Н17       | 0.9300      |
| С7—Н7     | 0.9800      | C18—C19       | 1.377 (4)   |
| C8—C9     | 1.528 (3)   | C18—H18       | 0.9300      |
| C8—H8A    | 0.9700      | С19—Н19       | 0.9300      |
| C8—H8B    | 0.9700      | C20—H20A      | 0.9600      |
| C9—C10    | 1.514 (4)   | С20—Н20В      | 0.9600      |
| С9—Н9А    | 0.9700      | С20—Н20С      | 0.9600      |
| С9—Н9В    | 0.9700      |               |             |
| O1—S1—O2  | 119.55 (12) | C9—C10—H10A   | 109.5       |
| O1—S1—N1  | 107.27 (10) | C11-C10-H10B  | 109.5       |
| O2—S1—N1  | 107.05 (10) | C9—C10—H10B   | 109.5       |
| O1—S1—C1  | 106.61 (10) | H10A—C10—H10B | 108.0       |
| O2—S1—C1  | 107.08 (11) | C10-C11-C12   | 111.3 (2)   |
| N1—S1—C1  | 108.96 (10) | C10-C11-H11A  | 109.4       |
| C13—N1—C7 | 119.09 (18) | C12-C11-H11A  | 109.4       |
| C13—N1—S1 | 119.41 (15) | C10-C11-H11B  | 109.4       |
| C7—N1—S1  | 118.11 (14) | C12—C11—H11B  | 109.4       |
| C6—C1—C2  | 118.9 (2)   | H11A—C11—H11B | 108.0       |
| C6—C1—S1  | 120.3 (2)   | C7—C12—C11    | 110.9 (2)   |
| C2—C1—S1  | 120.71 (18) | C7—C12—H12A   | 109.5       |
| C1—C2—C3  | 120.1 (2)   | C11-C12-H12A  | 109.5       |
| C1—C2—H2  | 119.9       | C7—C12—H12B   | 109.5       |
| С3—С2—Н2  | 119.9       | C11—C12—H12B  | 109.5       |
| C4—C3—C2  | 121.9 (2)   | H12A—C12—H12B | 108.1       |
| С4—С3—Н3  | 119.0       | N1—C13—C14    | 114.46 (18) |
| С2—С3—Н3  | 119.0       | N1—C13—H13A   | 108.6       |
| C3—C4—C5  | 117.2 (2)   | C14—C13—H13A  | 108.6       |
| C3—C4—C20 | 121.5 (3)   | N1—C13—H13B   | 108.6       |
| C5—C4—C20 | 121.3 (2)   | C14—C13—H13B  | 108.6       |
| C4—C5—C6  | 121.7 (2)   | H13A—C13—H13B | 107.6       |
| C4—C5—H5  | 119.2       | C19—C14—C15   | 118.4 (2)   |
| С6—С5—Н5  | 119.2       | C19—C14—C13   | 120.5 (2)   |
| C1—C6—C5  | 120.1 (3)   | C15-C14-C13   | 121.1 (2)   |
| С1—С6—Н6  | 120.0       | C14—C15—C16   | 120.2 (3)   |
| С5—С6—Н6  | 120.0       | C14—C15—H15   | 119.9       |
| N1—C7—C8  | 113.73 (19) | C16—C15—H15   | 119.9       |
| N1—C7—C12 | 110.59 (18) | C17—C16—C15   | 121.0 (3)   |
| C8—C7—C12 | 111.7 (2)   | C17—C16—H16   | 119.5       |

# supplementary materials

| N1—C7—H7                      | 106.8        | C15—C16—H16     | 119.5       |
|-------------------------------|--------------|-----------------|-------------|
| С8—С7—Н7                      | 106.8        | C18—C17—C16     | 118.8 (3)   |
| С12—С7—Н7                     | 106.8        | C18—C17—H17     | 120.6       |
| С7—С8—С9                      | 110.4 (2)    | С16—С17—Н17     | 120.6       |
| С7—С8—Н8А                     | 109.6        | C17—C18—C19     | 120.8 (3)   |
| С9—С8—Н8А                     | 109.6        | C17—C18—H18     | 119.6       |
| С7—С8—Н8В                     | 109.6        | С19—С18—Н18     | 119.6       |
| С9—С8—Н8В                     | 109.6        | C14—C19—C18     | 120.9 (3)   |
| H8A—C8—H8B                    | 108.1        | С14—С19—Н19     | 119.6       |
| C10—C9—C8                     | 111.1 (2)    | C18—C19—H19     | 119.6       |
| С10—С9—Н9А                    | 109.4        | C4—C20—H20A     | 109.5       |
| С8—С9—Н9А                     | 109.4        | C4—C20—H20B     | 109.5       |
| С10—С9—Н9В                    | 109.4        | H20A—C20—H20B   | 109.5       |
| С8—С9—Н9В                     | 109.4        | C4—C20—H20C     | 109.5       |
| Н9А—С9—Н9В                    | 108.0        | H20A—C20—H20C   | 109.5       |
| C11—C10—C9                    | 110.9 (2)    | H20B-C20-H20C   | 109.5       |
| C11—C10—H10A                  | 109.5        |                 |             |
| O1—S1—N1—C13                  | 159.58 (16)  | S1—N1—C7—C8     | -101.8 (2)  |
| O2—S1—N1—C13                  | 30.12 (19)   | C13—N1—C7—C12   | -69.2 (3)   |
| C1—S1—N1—C13                  | -85.37 (18)  | S1—N1—C7—C12    | 131.65 (18) |
| O1—S1—N1—C7                   | -41.37 (19)  | N1—C7—C8—C9     | 178.9 (2)   |
| O2—S1—N1—C7                   | -170.83 (17) | C12—C7—C8—C9    | -55.1 (3)   |
| C1—S1—N1—C7                   | 73.68 (19)   | C7—C8—C9—C10    | 55.6 (3)    |
| O1—S1—C1—C6                   | 16.6 (2)     | C8—C9—C10—C11   | -56.8 (3)   |
| O2—S1—C1—C6                   | 145.7 (2)    | C9—C10—C11—C12  | 56.8 (3)    |
| N1—S1—C1—C6                   | -98.9 (2)    | N1-C7-C12-C11   | -177.1 (2)  |
| O1—S1—C1—C2                   | -162.71 (19) | C8—C7—C12—C11   | 55.2 (3)    |
| O2—S1—C1—C2                   | -33.6 (2)    | C10-C11-C12-C7  | -56.0 (3)   |
| N1—S1—C1—C2                   | 81.8 (2)     | C7—N1—C13—C14   | 91.6 (2)    |
| C6—C1—C2—C3                   | -0.3 (4)     | S1—N1—C13—C14   | -109.5 (2)  |
| S1—C1—C2—C3                   | 179.01 (18)  | N1-C13-C14-C19  | -123.0 (2)  |
| C1—C2—C3—C4                   | -1.0 (4)     | N1-C13-C14-C15  | 58.5 (3)    |
| C2—C3—C4—C5                   | 1.6 (4)      | C19-C14-C15-C16 | -1.3 (4)    |
| C2—C3—C4—C20                  | -176.6 (2)   | C13-C14-C15-C16 | 177.2 (2)   |
| C3—C4—C5—C6                   | -1.0 (4)     | C14-C15-C16-C17 | 0.4 (5)     |
| C20—C4—C5—C6                  | 177.2 (3)    | C15-C16-C17-C18 | 0.4 (5)     |
| C2—C1—C6—C5                   | 0.9 (4)      | C16-C17-C18-C19 | -0.4 (5)    |
| S1—C1—C6—C5                   | -178.4 (2)   | C15-C14-C19-C18 | 1.3 (4)     |
| C4—C5—C6—C1                   | -0.2 (4)     | C13—C14—C19—C18 | -177.2 (3)  |
| C13—N1—C7—C8                  | 57.3 (3)     | C17—C18—C19—C14 | -0.5 (4)    |
|                               |              |                 |             |
| Hydrogen-bond geometry (Å, °) |              |                 |             |

| D—H···A  | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|----------|-------------|-------|--------------|------------|
| С7—Н7…О1 | 0.98        | 2.38  | 2.903 (3)    | 113        |

